3.2.24 \(\int \frac {x^3 (a+b \text {sech}^{-1}(c x))}{(d+e x^2)^3} \, dx\) [124]

3.2.24.1 Optimal result
3.2.24.2 Mathematica [C] (verified)
3.2.24.3 Rubi [A] (verified)
3.2.24.4 Maple [B] (verified)
3.2.24.5 Fricas [B] (verification not implemented)
3.2.24.6 Sympy [F(-1)]
3.2.24.7 Maxima [F(-2)]
3.2.24.8 Giac [F]
3.2.24.9 Mupad [F(-1)]

3.2.24.1 Optimal result

Integrand size = 21, antiderivative size = 173 \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}+\frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}-\frac {b \left (c^2 d+2 e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{\sqrt {c^2 d+e}}\right )}{8 d e^{3/2} \left (c^2 d+e\right )^{3/2}} \]

output
1/4*x^4*(a+b*arcsech(c*x))/d/(e*x^2+d)^2-1/8*b*(c^2*d+2*e)*arctanh(e^(1/2) 
*(-c^2*x^2+1)^(1/2)/(c^2*d+e)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)/d/e^( 
3/2)/(c^2*d+e)^(3/2)+1/8*b*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1 
/2)/e/(c^2*d+e)/(e*x^2+d)
 
3.2.24.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.58 (sec) , antiderivative size = 486, normalized size of antiderivative = 2.81 \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=-\frac {-\frac {4 a d}{\left (d+e x^2\right )^2}+\frac {8 a}{d+e x^2}-\frac {2 e \sqrt {\frac {1-c x}{1+c x}} (b+b c x)}{\left (c^2 d+e\right ) \left (d+e x^2\right )}+\frac {4 b \left (d+2 e x^2\right ) \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2}+\frac {4 b \log (x)}{d}-\frac {4 b \log \left (1+\sqrt {\frac {1-c x}{1+c x}}+c x \sqrt {\frac {1-c x}{1+c x}}\right )}{d}+\frac {b \sqrt {e} \left (c^2 d+2 e\right ) \log \left (\frac {16 d e^{3/2} \sqrt {c^2 d+e} \left (\sqrt {e}-i c^2 \sqrt {d} x+\sqrt {c^2 d+e} \sqrt {\frac {1-c x}{1+c x}}+c \sqrt {c^2 d+e} x \sqrt {\frac {1-c x}{1+c x}}\right )}{b \left (c^2 d+2 e\right ) \left (-i \sqrt {d}+\sqrt {e} x\right )}\right )}{d \left (c^2 d+e\right )^{3/2}}+\frac {b \sqrt {e} \left (c^2 d+2 e\right ) \log \left (\frac {16 d e^{3/2} \sqrt {c^2 d+e} \left (\sqrt {e}+i c^2 \sqrt {d} x+\sqrt {c^2 d+e} \sqrt {\frac {1-c x}{1+c x}}+c \sqrt {c^2 d+e} x \sqrt {\frac {1-c x}{1+c x}}\right )}{b \left (c^2 d+2 e\right ) \left (i \sqrt {d}+\sqrt {e} x\right )}\right )}{d \left (c^2 d+e\right )^{3/2}}}{16 e^2} \]

input
Integrate[(x^3*(a + b*ArcSech[c*x]))/(d + e*x^2)^3,x]
 
output
-1/16*((-4*a*d)/(d + e*x^2)^2 + (8*a)/(d + e*x^2) - (2*e*Sqrt[(1 - c*x)/(1 
 + c*x)]*(b + b*c*x))/((c^2*d + e)*(d + e*x^2)) + (4*b*(d + 2*e*x^2)*ArcSe 
ch[c*x])/(d + e*x^2)^2 + (4*b*Log[x])/d - (4*b*Log[1 + Sqrt[(1 - c*x)/(1 + 
 c*x)] + c*x*Sqrt[(1 - c*x)/(1 + c*x)]])/d + (b*Sqrt[e]*(c^2*d + 2*e)*Log[ 
(16*d*e^(3/2)*Sqrt[c^2*d + e]*(Sqrt[e] - I*c^2*Sqrt[d]*x + Sqrt[c^2*d + e] 
*Sqrt[(1 - c*x)/(1 + c*x)] + c*Sqrt[c^2*d + e]*x*Sqrt[(1 - c*x)/(1 + c*x)] 
))/(b*(c^2*d + 2*e)*((-I)*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e)^(3/2)) + 
(b*Sqrt[e]*(c^2*d + 2*e)*Log[(16*d*e^(3/2)*Sqrt[c^2*d + e]*(Sqrt[e] + I*c^ 
2*Sqrt[d]*x + Sqrt[c^2*d + e]*Sqrt[(1 - c*x)/(1 + c*x)] + c*Sqrt[c^2*d + e 
]*x*Sqrt[(1 - c*x)/(1 + c*x)]))/(b*(c^2*d + 2*e)*(I*Sqrt[d] + Sqrt[e]*x))] 
)/(d*(c^2*d + e)^(3/2)))/e^2
 
3.2.24.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.88, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {6855, 27, 354, 87, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 6855

\(\displaystyle b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {x^3}{4 d \sqrt {1-c^2 x^2} \left (e x^2+d\right )^2}dx+\frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {x^3}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )^2}dx}{4 d}+\frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {x^2}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )^2}dx^2}{8 d}+\frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {\left (c^2 d+2 e\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )}dx^2}{2 e \left (c^2 d+e\right )}+\frac {d \sqrt {1-c^2 x^2}}{e \left (c^2 d+e\right ) \left (d+e x^2\right )}\right )}{8 d}+\frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {d \sqrt {1-c^2 x^2}}{e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\left (c^2 d+2 e\right ) \int \frac {1}{-\frac {e x^4}{c^2}+d+\frac {e}{c^2}}d\sqrt {1-c^2 x^2}}{c^2 e \left (c^2 d+e\right )}\right )}{8 d}+\frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}+\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {d \sqrt {1-c^2 x^2}}{e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\left (c^2 d+2 e\right ) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{\sqrt {c^2 d+e}}\right )}{e^{3/2} \left (c^2 d+e\right )^{3/2}}\right )}{8 d}\)

input
Int[(x^3*(a + b*ArcSech[c*x]))/(d + e*x^2)^3,x]
 
output
(x^4*(a + b*ArcSech[c*x]))/(4*d*(d + e*x^2)^2) + (b*Sqrt[(1 + c*x)^(-1)]*S 
qrt[1 + c*x]*((d*Sqrt[1 - c^2*x^2])/(e*(c^2*d + e)*(d + e*x^2)) - ((c^2*d 
+ 2*e)*ArcTanh[(Sqrt[e]*Sqrt[1 - c^2*x^2])/Sqrt[c^2*d + e]])/(e^(3/2)*(c^2 
*d + e)^(3/2))))/(8*d)
 

3.2.24.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 6855
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*( 
x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Si 
mp[(a + b*ArcSech[c*x])   u, x] + Simp[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)] 
Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; Fre 
eQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && 
 GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2 
*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))
 
3.2.24.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1361\) vs. \(2(147)=294\).

Time = 5.09 (sec) , antiderivative size = 1362, normalized size of antiderivative = 7.87

method result size
parts \(\text {Expression too large to display}\) \(1362\)
derivativedivides \(\text {Expression too large to display}\) \(1395\)
default \(\text {Expression too large to display}\) \(1395\)

input
int(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)
 
output
a*(-1/2/e^2/(e*x^2+d)+1/4*d/e^2/(e*x^2+d)^2)+b/c^4*(-1/2*c^6*arcsech(c*x)/ 
e^2/(c^2*e*x^2+c^2*d)+1/4*c^8*arcsech(c*x)*d/e^2/(c^2*e*x^2+c^2*d)^2-1/16* 
c^5*(-(c*x-1)/c/x)^(1/2)*x*((c*x+1)/c/x)^(1/2)*e*(4*((c^2*d+e)/e)^(1/2)*ar 
ctanh(1/(-c^2*x^2+1)^(1/2))*c^6*d^2*e*x^2+4*((c^2*d+e)/e)^(1/2)*arctanh(1/ 
(-c^2*x^2+1)^(1/2))*c^6*d^3-ln(-2*(((c^2*d+e)/e)^(1/2)*(-c^2*x^2+1)^(1/2)* 
e-(-c^2*d*e)^(1/2)*c*x+e)/(-c*e*x+(-c^2*d*e)^(1/2)))*x^2*c^6*d^2*e-ln(-2*( 
((c^2*d+e)/e)^(1/2)*(-c^2*x^2+1)^(1/2)*e-(-c^2*d*e)^(1/2)*c*x+e)/(-c*e*x+( 
-c^2*d*e)^(1/2)))*c^6*d^3-ln(2*(((c^2*d+e)/e)^(1/2)*(-c^2*x^2+1)^(1/2)*e+( 
-c^2*d*e)^(1/2)*c*x+e)/(c*e*x+(-c^2*d*e)^(1/2)))*c^6*d^2*e*x^2-ln(2*(((c^2 
*d+e)/e)^(1/2)*(-c^2*x^2+1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x+e)/(c*e*x+(-c^2*d 
*e)^(1/2)))*c^6*d^3+8*((c^2*d+e)/e)^(1/2)*arctanh(1/(-c^2*x^2+1)^(1/2))*c^ 
4*d*e^2*x^2+8*((c^2*d+e)/e)^(1/2)*arctanh(1/(-c^2*x^2+1)^(1/2))*c^4*d^2*e+ 
2*(-c^2*x^2+1)^(1/2)*((c^2*d+e)/e)^(1/2)*c^4*d^2*e-3*ln(-2*(((c^2*d+e)/e)^ 
(1/2)*(-c^2*x^2+1)^(1/2)*e-(-c^2*d*e)^(1/2)*c*x+e)/(-c*e*x+(-c^2*d*e)^(1/2 
)))*x^2*c^4*d*e^2-3*ln(-2*(((c^2*d+e)/e)^(1/2)*(-c^2*x^2+1)^(1/2)*e-(-c^2* 
d*e)^(1/2)*c*x+e)/(-c*e*x+(-c^2*d*e)^(1/2)))*c^4*d^2*e-3*ln(2*(((c^2*d+e)/ 
e)^(1/2)*(-c^2*x^2+1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x+e)/(c*e*x+(-c^2*d*e)^(1 
/2)))*c^4*d*e^2*x^2-3*ln(2*(((c^2*d+e)/e)^(1/2)*(-c^2*x^2+1)^(1/2)*e+(-c^2 
*d*e)^(1/2)*c*x+e)/(c*e*x+(-c^2*d*e)^(1/2)))*c^4*d^2*e+4*((c^2*d+e)/e)^(1/ 
2)*arctanh(1/(-c^2*x^2+1)^(1/2))*e^3*c^2*x^2+4*((c^2*d+e)/e)^(1/2)*arct...
 
3.2.24.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 638 vs. \(2 (115) = 230\).

Time = 0.38 (sec) , antiderivative size = 1346, normalized size of antiderivative = 7.78 \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Too large to display} \]

input
integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 
output
[-1/16*(4*a*c^4*d^4 + 2*(4*a - b)*c^2*d^3*e + 2*(2*a - b)*d^2*e^2 - 2*(b*c 
^2*d*e^3 + b*e^4)*x^4 + 4*(2*a*c^4*d^3*e + (4*a - b)*c^2*d^2*e^2 + (2*a - 
b)*d*e^3)*x^2 - (b*c^2*d^3 + (b*c^2*d*e^2 + 2*b*e^3)*x^4 + 2*b*d^2*e + 2*( 
b*c^2*d^2*e + 2*b*d*e^2)*x^2)*sqrt(c^2*d*e + e^2)*log((c^4*d^2 + 4*c^2*d*e 
 - (c^4*d*e + 2*c^2*e^2)*x^2 + 4*(c^3*d*e + c*e^2)*x*sqrt(-(c^2*x^2 - 1)/( 
c^2*x^2)) + 4*e^2 + 2*(c^2*e*x^2 - c^2*d - (c^3*d + 2*c*e)*x*sqrt(-(c^2*x^ 
2 - 1)/(c^2*x^2)) - 2*e)*sqrt(c^2*d*e + e^2))/(e*x^2 + d)) + 4*(b*c^4*d^4 
+ 2*b*c^2*d^3*e + b*d^2*e^2 + (b*c^4*d^2*e^2 + 2*b*c^2*d*e^3 + b*e^4)*x^4 
+ 2*(b*c^4*d^3*e + 2*b*c^2*d^2*e^2 + b*d*e^3)*x^2)*log((c*x*sqrt(-(c^2*x^2 
 - 1)/(c^2*x^2)) - 1)/x) + 4*(b*c^4*d^4 + 2*b*c^2*d^3*e + b*d^2*e^2 + 2*(b 
*c^4*d^3*e + 2*b*c^2*d^2*e^2 + b*d*e^3)*x^2)*log((c*x*sqrt(-(c^2*x^2 - 1)/ 
(c^2*x^2)) + 1)/(c*x)) - 2*((b*c^3*d^2*e^2 + b*c*d*e^3)*x^3 + (b*c^3*d^3*e 
 + b*c*d^2*e^2)*x)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)))/(c^4*d^5*e^2 + 2*c^2*d^ 
4*e^3 + d^3*e^4 + (c^4*d^3*e^4 + 2*c^2*d^2*e^5 + d*e^6)*x^4 + 2*(c^4*d^4*e 
^3 + 2*c^2*d^3*e^4 + d^2*e^5)*x^2), -1/8*(2*a*c^4*d^4 + (4*a - b)*c^2*d^3* 
e + (2*a - b)*d^2*e^2 - (b*c^2*d*e^3 + b*e^4)*x^4 + 2*(2*a*c^4*d^3*e + (4* 
a - b)*c^2*d^2*e^2 + (2*a - b)*d*e^3)*x^2 + (b*c^2*d^3 + (b*c^2*d*e^2 + 2* 
b*e^3)*x^4 + 2*b*d^2*e + 2*(b*c^2*d^2*e + 2*b*d*e^2)*x^2)*sqrt(-c^2*d*e - 
e^2)*arctan((sqrt(-c^2*d*e - e^2)*c*d*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) - s 
qrt(-c^2*d*e - e^2)*(e*x^2 + d))/((c^2*d*e + e^2)*x^2)) + 2*(b*c^4*d^4 ...
 
3.2.24.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

input
integrate(x**3*(a+b*asech(c*x))/(e*x**2+d)**3,x)
 
output
Timed out
 
3.2.24.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.2.24.8 Giac [F]

\[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

input
integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)*x^3/(e*x^2 + d)^3, x)
 
3.2.24.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \]

input
int((x^3*(a + b*acosh(1/(c*x))))/(d + e*x^2)^3,x)
 
output
int((x^3*(a + b*acosh(1/(c*x))))/(d + e*x^2)^3, x)